
International Journal of Solids and Structures 41 (2004) 227–245

www.elsevier.com/locate/ijsolstr
Optimization of laminates with free edges under bounded
uncertainty subject to extension, bending and twisting

Maenghyo Cho *, Seung Yun Rhee

School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shillim-Dong,

Kwanak-Gu, Seoul 151-744, South Korea

Received 27 December 2002; received in revised form 2 September 2003
Abstract

The layup of the maximum strength of laminated composites with free edges under extension, bending, and

twisting loads was optimized by genetic algorithm (GA). Interlaminar stresses, as well as in-plane stresses, were

considered in estimating the strength of laminates. To calculate the interlaminar stresses of composite laminates with

free edges, iterative stress-based method was applied. To consider the bounded uncertainty of material properties,

convex modeling was used. Because interlaminar strength can change rapidly with respect to the scattered deviation of

material properties values, a linear convex model is not suitable in considering bounded uncertainty. Thus, in the

present study, two-point exponential approximation was used to build a convex set. In the formulation of a GA, a

repair strategy was adopted to satisfy given constraints. In addition, a multiple elitism was implemented to efficiently

and reliably search the optimum and near optimal designs as many as possible. Because uncertainties are always

encountered in composite materials, they need to be taken into account in lightweight design of laminated composite

structures. The combination of genetic algorithms and convex modeling is practical in accounting for the uncertainties

and optimizing layup.
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1. Introduction

Laminates with free edges experience the failure initiations by the critical interlaminar stresses near the
free edges. Thus, if the presence of free edges cannot be avoided, layups should be arranged such that the

interlaminar stresses are suppressed near the free edges of laminates. The interlaminar free-edge strength

analysis plays a key role in solving the optimization problem of a layup design of laminates. Although the

current finite element method can predict the interlaminar stresses, it still requires much computation time

and quite often it cannot predict accurately the interlaminar stresses near the interface between layers. In
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addition, the repeated efforts to prepare different meshes for analyzing the behaviors for various layup

configurations make design optimization not only impossible but much harder. Thus, a simple and efficient

analytical method (Cho and Yoon, 1999; Cho and Kim, 2000) should be designed to analyze the interla-

minar stresses near the free edges. Kim et al. (2000) demonstrated the efficiency and reliability of the
method in predicting the free-edge interlaminar stresses and strength under thermo-mechanical loadings.

The iterative extended Kantorovich method was used in the present study to analyze the strength of free

edges.

In laminated composite structures, the layups of laminates can be arranged to be lightweight and/or to

have high performance. In most structural designs using composite laminates, laminates are restricted to

some discrete sets of ply orientation angles such as 0�, ±30�, ±45�, ±60� and 90�. This practical manu-

facturing point of view requires the discretized optimization methodology for the layup design problem.

Genetic algorithm (GA) or simulated annealing method is considered an appropriate method for discret-
ized optimization problems.

Genetic algorithm is a powerful methodology for problems with integer variables and problems in which

the gradient of the objective function is difficult to obtain (Goldberg, 1989). Recently, much research in

design optimization of composite structures employing a genetic algorithm has been reported. The appli-

cation of genetic algorithm for composite structures was initially reported by Hajela (1990). Le Riche and

Haftka (1993) proposed a genetic algorithm to optimize the stacking sequence of a composite laminate for

maximum buckling load. For the same problem, Liu et al. (2000) provided permutation genetic algorithms.

Le Riche and Haftka (1995) used a genetic algorithm for the minimum thickness design of composite
laminated plates. They proposed improved selection, mutation, and permutation operators to reduce the

average price of a genetic search. Nagendra et al. (1996) proposed an improved genetic algorithm to design

stiffened composite panels. A recessive-gene-like repair strategy was introduced by Todoroki and Haftka

(1998) to handle given constraints efficiently. Recently, Soremekun et al. (2001) applied the generalized

elitist selection (GES) to the problems with many global optima and to those with many designs that show

performance very close to optimal design.

In the present study, genetic algorithm with the repair strategy is adopted. The balanced symmetric

layup constraints and limitation of four contiguous layers are implemented by the repair strategy. To find
multiple global optima, we selected the first multiple elitist selection (ME1) among GES.

Due to the uncertainty of the manufacturing process on the laminated composites, the stiffnesses, angle

orientations and ply thicknesses of laminates are not determined uniformly. The scattering of these para-

meters depends on the quality of cured laminates. These uncertainties should be included in the design

process. However, the information on the overall probability density function for each of the parameters is

difficult to obtain. Thus, we postulate that the scattering bounds with respect to the nominal values of the

parameters such as material properties are known priori. Then, by constructing a convex set from the

scattering bounds and sensitivities of the functional, a modified functional with the effect of uncertainties
can be obtained (Ben-Haim and Elishakoff, 1990; Elishakoff and Colombi, 1993; Elishakoff et al., 1994;

Kim and Sin, 2000).

A linear convex modeling should not be applied to estimate the interlaminar free-edge strength, which

changes rapidly with respect to the deviation in the material property values. Thus, in the present study,

convex modeling for interlaminar strength under bending and twisting is constructed by using information

from the interlaminar failure surface which is approximated by two-point exponential approximation

(TPEA) (Fadel et al., 1990). Previously, the optimization considering uncertainties of material properties

under extension was presented by Cho and Rhee (in press). In the present study, extension, bending, and
twisting loads are considered to handle various loading conditions.

The present study consists of the following: First, the extended Kantorovich method for free-edge stress/

strength analysis is outlined for stretching, bending, and twisting. Second, the formulation of a modified

optimized functional subject to a convex set of constraints is derived with TPEA. Third, genetic algorithm
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with a repair strategy and a multiple elitism is outlined. Finally, numerical examples and discussions are

provided.
2. Strength analysis considering free-edge strength

2.1. Extended Kantorovich method

The geometry of composite laminates with free edges under extension, bending, and twisting is given in
Fig. 1. The laminate consists of orthotropic materials. The thickness of each ply is all the same, and

symmetric layups are considered. The linear elastic constitutive equations are assumed in each ply, and they

are expressed in the following form,
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For the given geometric configuration of laminates, the boundary conditions at the free edge and at the

surfaces of top and bottom faces are given in Eq. (2).
r2 ¼ r4 ¼ r6 ¼ 0 at y ¼ 0; b;

r3 ¼ r4 ¼ r5 ¼ 0 at z ¼ �h=2:
ð2Þ
Generalized plane strain states are assumed and the stress fields are independent of x-axis. The coor-

dinates are nondimensionalized as follows,
g ¼ z=h; n ¼ y=h:
Lekhnitskii stress functions are employed to satisfy pointwise equilibrium equations automatically.

These stress functions can be divided into the in-plane and out-of-plane functions. The functions fiðnÞ and
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Fig. 1. Geometry of composite laminates with free edges.
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piðnÞ are in-plane functions, and giðgÞ and hiðgÞ are out-of-plane functions. The individual stress compo-

nents are obtained from Lekhnitskii stress functions and the relationships are given as,
o2F
og2

¼ r2;
o2F

on2
¼ r3;

o2F
ogon

¼ �r4;

ow
on

¼ �r5;
ow
og

¼ r6;

ð3Þ
where,
F ¼
Xn
i¼1

fiðnÞgiðgÞ; w ¼
Xn
i¼1

piðnÞgIi ðgÞ ð4Þ
for extension and bending loads. The superscript I in Eq. (4) denotes differentiation with respect to g. Or,
F ¼
Xn
i¼1

fiðnÞgiðgÞ; w ¼
Xn
i¼1

piðnÞhiðgÞ ð5Þ
for twisting load. Since assumed stress functions gIi ðgÞ in Eq. (4) cannot provide nontrivial interlaminar
stresses in the twisting load case, the assumed base functions giðgÞ and hiðgÞ are chosen independently.

The in-plane stress functions are determined from the initially assumed basis set of out-of-plane func-

tions which must satisfy traction-free conditions at the top and bottom surfaces. The initial out-of-plane

functions giðgÞ are assumed to be the eigenmodes of a clamped–clamped beam vibration.

The governing equations are obtained from the principle of complementary virtual work.
0 ¼
Z Z Z

ui drij;j dxdy dz
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Z Z Z
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¼
Z Z
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By using traction-free boundary conditions and neglecting rigid body motions, one obtains
Z Z
ðDudrxx þ Dvdryx þ DwdrzxÞdy dz

¼
Z Z

eij drij dy dz ðDu ¼ C � Bz; Dv ¼ �Hz; Dw ¼ B=2þ HyÞ; ð7Þ
where B characterizes the bending of the body in the z–x plane and C characterizes the extension of the body

along the x-axis. H is the relative angle of rotation about the x-axis.
From the initially assumed out-of-plane basis function set, one can get the in-plane stress functions. The

first process is given as follows. Substituting Eq. (3) into Eq. (7), the stresses are expressed in terms of fi and
pi. The Euler differential equations for fi and pi can be obtained from Eq. (7). Thus in-plane stress functions

are determined from the initially assumed out-of-plane stress functions giðgÞ.
In the second process, Kantorovich method is reapplied to the original complementary virtual work

principle given in Eq. (7). Substituting the in-plane stress functions fi and pi, which were obtained in the first
process, into Eq. (7), the enhanced out-of-plane stress functions giðgÞ are obtained by solving Euler

equations derived from Eq. (7).
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The third iteration process is similar to the first one and the fourth process is similar to the second

process. In the computer program, n-time iterations can be easily performed since the stress function

patterns do not change after the second process. The detailed analysis process can be found in the papers

provided by Cho and Yoon (1999) and Cho and Kim (2000).

2.2. Evaluation of the interlaminar strength by the averaged stresses

Most interlaminar stresses show singularity or concentration near the free edges as shown in Fig. 2.

Thus, the pointwise stresses at the free edges are not meaningful in the strength analysis because this region

is not homogeneous in the micro-length scale. Therefore, the average stress criterion (Whitney and Nuis-

mer, 1974) is employed to evaluate the interlaminar strength of the composite laminates. For example, the

average value of interlaminar normal stress (rzz) can be calculated by the following equation,
�rrzz ¼
1

h0

Z h0

0

rzzðn; gÞdn: ð8Þ
In Eq. (8), h0 is taken as one ply thickness for all the cases. The concept of the average stress �rrzz is shown in

Fig. 2.

2.3. Maximum stress criterion and quadratic delamination criterion

In the present layup optimization problem for maximal strength, the maximum stress criterion was

adopted for the in-plane strength criterion, and a quadratic delamination criterion (Brewer and Lagace,

1988) was used for the interlaminar strength criterion. They are given as,
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Fig. 2. The concept of averaging stress over the distance (h0) from free edge.
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where, X and Y represent the failure strength along and transverse to the fiber direction, respectively. S
denotes the shear strength. Tension and compression are represented by subscripts t and c, respectively. The

quantities �rrzz and �rrzx denote the averaged interlaminar stresses near the free edge of the laminates as given

in Section 2.2. The quadratic delamination criterion is employed because it is more reliable and compact to
apply than the independent maximum average stress criterion. Using the above criteria, we consider the six

failure modes: tensile axial, compressive axial, tensile transverse, compressive transverse and interlaminar

failure modes.
3. Convex modeling

To consider the uncertainty of the design parameters, the function of the probability distributions should
be known. However, the probability function of the scattered distribution requires sufficient data mea-

surements. In the industry, these uncertainty distribution functions may not be available. If the uncer-

tainties under consideration are bounded with respect to the nominal reference values, a convex set from

scattering bound of design parameters can be easily constructed. The convex set can be used in the con-

straint equations of the optimization problem to consider the uncertainties of material data. The procedure

for the convex modeling is outlined here to apply to our problems.

Convex modeling needs to be modified to consider properly uncertainty of material properties in

evaluating the inerlaminar strength. Thus, the failure surface for interlaminar strength should be ap-
proximated more closely to the exact one. Thus in the present study, TPEA is used to build a convex set for

the interlaminar strength. TPEA is a methodology for approximating the actual function by using function

values and derivatives at the two design points. The sensitivities inserted in the convex modeling are cal-

culated from information from the approximated failure surface.

3.1. Formulation of convex modeling

In this section, formulation of convex modeling is briefly outlined. The detailed explanation can be
found in the reference (Kim and Sin, 2000).

Let us assume that GðDi) is a failure index for optimization. Di are the uncertain parameters considered

in the problem. We consider the uncertainty of material properties in the present study. Then D1, D2, D3

and D4 are set equal to EL, ET, mLT and GLT, respectively. The failure index GðDiÞ can be expanded up to

linear terms by considering small parameter changes as follows,
GðDiÞ ¼ GðD0
i þ diÞ ¼ GðD0

i Þ þ
X4
i¼1

oGðD0
i Þ

oDi
di; ð11Þ
where D0
i are the nominal values of the uncertain parameters and jdij6Di.

The perturbed failure index can be symbolically given as,
GðD0
i þ diÞ ¼ GðD0

i Þ þ ff gTfdg; ð12Þ
where,
ff gT ¼ oGðD0
i Þ

oD1

;
oGðD0

i Þ
oD2

;
oGðD0

i Þ
oD3

;
oGðD0

i Þ
oD4

� �
; ð13Þ

fdgT ¼ ½d1; d2; d3; d4�: ð14Þ
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If it is assumed that di construct a convex set, then from the linearity of Eq. (12), maximum values are on
the boundary of the convex set. The constructed convex set of ellipsoid shape is derived as follows,
ZðdÞ ¼ d :
X4
i¼1

d2
i

d2i

(
6 1

)
: ð15Þ
In Fig. 3, the schematic of the convex set in 3-D configurational space with three uncertain parameters D1,

D2 and D3 is displayed.

To increase the accuracy of analysis, the volume of ellipsoid Cd1d2d3d4 should be minimized. Moreover,

the corners of the box (di ¼ �Di) have to be on the surface of the ellipsoid. Thus, to obtain di, the following
Lagrangian should be minimized with respect to di and k,
L ¼ Cd1d2d3d4 þ k
D2

1

d21

�
þ D2

2

d22
þ D2

3

d23
þ D2

4

d24
� 1

�
: ð16Þ
Through the minimization process, di can be obtained as,
di ¼ 2Di: ð17Þ

The problem of maximizing the failure index with material data scattering di can be constructed in the

following form,
Gmax ¼ Maxfdg2ZðdÞ½GðD0
i Þ þ ff gTfdg�: ð18Þ
The problem can be expressed by the following modified Lagrangian,
LðdÞ ¼ ff gTfdg þ kðfdgTfegfdg � 1Þ; ð19Þ
where feg is a diagonal matrix whose diagonal elements are eii ¼ 1=d2i .
After obtaining the Lagrange multiplier, fdg for the maximum failure index is obtained as,
fdg ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ff gTfeg�1ff g

q feg�1ff g: ð20Þ
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The maximum failure index considering bounded scattered data can be finally obtained as,
Gmax ¼ GðD0
i Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ff gTfeg�1ff g

q
¼ GðD0

i Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

di
oGðD0

i Þ
oDi

� �2vuut : ð21Þ
To construct a convex set for considering the bounded uncertainty of scattered parameters, the sensi-

tivities are computed with a finite difference scheme. That is,
oG
oDi

¼ Ge � G0

eDi

e : small number ð0:0001Þ
Di : nominal values of properties

� �
; ð22Þ
where, G0 and Ge are the objective functions at the nominal values of material properties and at the

scattered values, respectively.

When the convex model is applied even for the same layup, the failure mode may be altered as the
amount of deviations of material properties is changed. Thus, six independent convex sets for one layup are

constructed to consider six independent failure modes. The minimum among the failure indices calculated

from the six convex sets is assigned as the fitness of the layup.
3.2. Modification of convex modeling for interlaminar strength: TPEA

A TPEA (Fadel et al., 1990) was developed originally for reducing computational cost. Here, it is

employed to estimate derivatives in the convex model more accurately. This approximation is a linear

approximation with the exponent transform through intermediate variables. The physical variables are

transformed to the intervening variables using the relation,
Yi ¼ Dpi
i ði ¼ 1; 2; . . . ; nÞ; ð23Þ
where n is the number of design variables and the exponents pi are determined by matching derivatives of

function at the nominal values of material properties.
o~GG
oYi

�����
~YY 0

¼ oG
oYi

����
~YY 0

) o~GG
oDi

�����
~DD0

¼ D0
i

Dd
i

� �pi�1
oG
oDi

����
~DDd
; ð24Þ
where ~DD0
i is the point which consists of nominal values and ~DDd

i is the perturbed point which is at a certain

distance from the nominal point.
Finally, the approximated function is obtained by expanding the function at the deviated point as,
~GGð~DDÞ ¼ Gð~DDdÞ þ
X4
i¼1

ðDd
i Þ
pi�1

pi
� oG
oDi

����
~DDd

� ½ðDiÞpi
(

� ðDd
i Þ
pi �
)
: ð25Þ
Sensitivities required to construct convex model are calculated from the exact function value at the

nominal point and approximated function value at the deviated point.
o~GG
oDi

�����
Subst

¼ Gð~DD0Þ � ~GGðD0
1;D

0
2; . . . ;D

0
i � Di; . . . ;D0

nÞ
Di

; ð26Þ
where the superscript �Subst� indicates the substituted sensitivity. For 1-D example, the substituted sensi-

tivity corresponds to the slope shown in Fig. 4. The sensitivity value in the modified convex model is now
changed by using TPEA given in Eqs. (25) and (26).
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4. Genetic algorithm

The design objective of the present study is to obtain layup configurations of symmetric laminates that

sustain the maximum applied load under the above-mentioned independent maximum stress criterion. The

16-ply symmetric layup configurations are considered in the present study. Each ply thickness is fixed, and

ply orientation angles are limited to 0�, ±30�, ±45�, ±60� and 90�. This limitation makes the layup design a
combinatorial optimization problem. Genetic algorithms have been used extensively to solve this type of

combinatorial problems. Genetic algorithms are well suited for the problem of layup optimization, and

because of the random nature of GA, they easily produce alternative optima in repeated runs. This property

is particularly important in layup optimization because widely different layups can have very similar per-

formance (Shin et al., 1989).

Three constraints are applied to the present optimization problem. The first one is the symmetric layup

constraint, but this is satisfied automatically by the coding rule in which only half of the laminates are

represented in a chromosome. The second constraint is a requirement of the balanced laminate construc-
tion, which is intended to reduce or eliminate undesirable extensional–shear coupling and bending–twisting

coupling. The third constraint is a limit of four contiguous plies with the same fiber orientation, which

reduces the problem of matrix cracking. These constraints are referred to as �balance constraint� and �four-
contiguity constraint� respectively in the following descriptions. It is not easy to enforce these two con-

straints in genetic optimization. Penalty function may be used to handle these constraints. But in the

present study, a recessive-gene-like repair strategy (Todoroki and Haftka, 1998) is applied with modifi-

cations. The key concept of the strategy is to repair the laminate without changing the chromosome.

For the problem with multiple global optima, the optimization process that finds as many optima as
possible is required. To find these optima, the multiple elitism strategy (Soremekun et al., 2001), which

copies the best designs in current generation into the next generation, is adopted.
4.1. Outline of GA scheme

The flowchart of GA is illustrated in Fig. 5. To represent the ply angles in a layup as genes (in a

chromosome), five numbers are introduced with each gene having one of the values of 0, 1, 2, 3 or 4. The

gene-0 and gene-4 correspond to 0� and 90� plies, respectively. The occurrences of the first (outermost),

third, fifth, and so on of gene-1 correspond to +30� while even-number occurrences correspond to )30�. In a
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similar way, gene-2 and gene-3 represent ±45� and ±60�, respectively. Herein, only half of the plies is

represented by the chromosome due to the symmetry constraint of laminates.

The initial population of chromosomes is generated at random. Each chromosome (laminate) is repaired

by the following repair strategies and evaluated by the maximum applied load, calculated by using the

strength analysis described in the previous section.

The Ne best chromosomes of each generation are always copied into the next generation by multiple
elitism. Selection is executed by a linear search through a roulette wheel with slots weighted in proportion

to string fitness values.

After selection, a two-point crossover, which is different from a simple crossover, is conducted with a

probability value of Pcr. Two random cut-points are chosen first, and the offsprings are generated by

combining the middle segment of one parent with the outer segment of the other parent. When crossover is

not conducted, the selected two parents are copied into the next generation.

Mutation is applied to the chromosomes, except for the elites of the previous generation. The probability

of mutation, Pmu, is defined as the percentage of the total number of genes in the population. This operator
prevents premature loss of important genetic information by randomly altering a chromosome.
4.2. Repair strategy for balance constraint

When the number of gene-1 is odd, the decoded laminate will be unbalanced, or only one unbalanced

+30� ply will be in excess in the laminate. The situations will be same for gene-2 and gene-3. In the present

study, the strategy for balance constraint is classified into three cases. The repairing procedures are adopted

such that they make the least changes in the mechanical behavior of the repaired layup compared to that of

the unrepaired layup.

When only one kind of gene among three genes (gene-1, gene-2 and gene-3) violates balance constraint,

the innermost gene-1 is changed into gene-0, and the gene-2 is changed into gene-0 or gene-4 with the same

probability, and the gene-3 into gene-4, respectively. If there is only one violating gene, the innermost gene-
0 or gene-4 is altered to balance the violating gene. When two kinds of genes violate this constraint, the

innermost gene among the violating genes is converted into the other kind of gene.

Let us consider a case in which there are three gene species that violate the balance constraint. If the

innermost gene among the group of gene-1�s and gene-3�s is gene-1, the innermost violating gene-1 should
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be changed to gene-0. Next, the remaining violating genes are gene-2 and gene-3. The next repairing process

is to convert the innermost violating gene (among the group of gene-2�s and gene-3�s) into the remaining

angle-ply gene (gene-2$ gene-3). In the other case in which gene-3 is the innermost instead of gene-1, the

innermost gene-3 is converted into gene-4. Consecutively, the innermost violating gene (among the group of
gene-1�s and gene�2) is switched into the remaining angle-ply gene (gene-1$ gene-2).

This strategy is similar to that of Todoroki�s version but not the same. For example, in the present

repairing strategy, the repairing process for balance constraint precedes the four-contiguity constraint re-

pairing process. Thus, extra effort is not required to reconsider the four-contiguity constraint in checking

the balance constraint. In addition, three kinds of angle-ply genes are considered in the present study (±30�,
±45�, ±60�), whereas only one kind of angle-ply genes is considered in Todoroki�s study (±45�). Thus, the
consideration of balance constraint is more complicated in the present strategy than in Todoroki�s.

If the repair procedure does not change the laminate but changes the genes only, it can prevent beneficial
changes which occur as a result of two or more consecutive mutations. For example, consider a case when it

is beneficial to transform the chromosome [13130202] corresponding to the [30/60/)30/)60/0/45/0/)45]s
laminate into [13130404] corresponding to the [30/60/)30/)60/0/90/0/90]s laminate. When the chromosome

[13130202] mutates into the chromosome [13130204], the repair system reverses the change, and the

chromosome still corresponds to the [30/60/)30/)60/0/45/0/)45]s laminate. In this case, the repair proce-

dure does not change the chromosome. One additional mutation in a future generation can transform the

gene to [13130404], and the innermost gene-4 will now be developed into the 90� ply. The innermost gene-4

acts like a recessive gene.
4.3. Repair strategy for four-contiguity constraint

This constraint is concerned with only gene-0 and gene-4. When there are more than four contiguous

genes, the innermost one of the contiguous genes is converted into other suite of gene. For example,

[02444420] is repaired into [2444020].
For the innermost genes, this repair procedure should be modified. When the two innermost genes are of

the same kind, there are already four contiguous plies with the same orientation in the middle of the

laminate due to the layup symmetry. Therefore, the repair process is not allowed to stack more than two

genes in the innermost position within a laminate. When the innermost genes violate this rule, the gene

value of the innermost ply is converted into another kind of gene. For example, [04104100] is converted into

[04104104].
4.4. Multiple elitism

The schematic of multiple elitism is shown in Fig. 6. The top designs (elites) from the parent population

are selected and placed into the new population. The child designs required to fill the remainder of the new

population are created from the remaining parents that have not been selected as multiple elites, and then

placed into the new population. This selection scheme is computationally less intensive because fewer child
designs require fitness computation. The number of elites to be copied into the next generation (Ne) is

determined by the following equation, in which the more elites are selected as the population size increases,
Ne ¼
PopSizeþ 5

4

� �
; ð27Þ
where, PopSize is the population size and the symbol ‘‘b c’’ (floor) indicates the largest integer smaller than

or same as the number in the symbol. For example, when population size is 25, seven elites are selected and
copied into the next generation.



Fig. 6. Schematic of multiple elitism.
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4.5. Criteria for evaluating the performance of GA

If the optimized results have been obtained, the performance of GA can be estimated for various pa-

rameters. In the following study, four different criteria, which was previously proposed by Soremekun et al.,

are applied to assess the performance of the present GA in the layup optimization problem. The first

criterion is the normalized cost per genetic search, Cn, determined by
Cn ¼
NgNc

R
R
�

¼ Nop

Nr

�
; ð28Þ
where Ng is the number of generations per run, Nc is the number of child designs created in each generation,

and R is reliability. If GA is run Nr times and succeeds in finding at least one of the several global optima

Nop times of these runs, then the reliability R is calculated as the equation in the parenthesis of Eq. (28).

The second criterion is the average number of optima found per genetic search:
AN0
¼
PNr

i¼1 N
i
0

Nr

; ð29Þ
where Ni
0 is the number of optima found in the ith optimization run. In the present study, there are three

global optima for the case of extension and there are three pseudo-optima for the cases of bending. Thus,

we choose three as the maximum number of this criterion for all cases.

The third criterion is defined as the cost per optimum found:
C0 ¼
NgNc

AN0

: ð30Þ
The final criterion is the final population richness, which helps to monitor how the GA exploits global

optimum regions of the design space. Final population richness Pr is defined as,
Pr ¼
NDf

PopSize � Nr

; ð31Þ
where NDf is the number of members in the final population of each run with fitness values within a certain

small amount (Df ) of the optimum.



M. Cho, S.Y. Rhee / International Journal of Solids and Structures 41 (2004) 227–245 239
5. Results

In the present study, graphite–epoxy composite laminates under extension, bending, and twisting are

considered. We consider symmetric 16-ply layup configurations. The material properties and strength data
are as follows,
Table

Param

Para

Chr

Upp

Num

Pop

Prob

Prob
E1 ¼ 207 GPa; E2 ¼ E3 ¼ 5 GPa; G12 ¼ G13 ¼ 2:6 GPa;

G23 ¼ 1:8 GPa; m12 ¼ m13 ¼ 0:25; m23 ¼ 0:45;

Xt ¼ 1035 MPa; Xc ¼ 689 MPa;

Yt ¼ 41 MPa; Yc ¼ 117 MPa; S ¼ 69 MPa;
where subscripts 1, 2, and 3 indicate the x-, y- and z-direction in the space, respectively.
In the calculation of the interlaminar stresses, two term expansion (n ¼ 2) in Eqs. (4) and (5), is used and

three iterations are performed in the extended Kantorovich method. These selections are sufficient to

calculate stresses reliably.

Various parameters––population size, probability of mutation, and probability of crossover, and so

on––are given in Table 1. As previously stated, four criteria in Section 4.5 are adopted to evaluate the

numerical performance of GA. In the evaluation of NDf in Eq. (31), we consider the designs whose fitnesses

are within the deviation of 9.2% from the optimal one for extension and 6.4% for bending and 12.4% for

twisting.
5.1. For the case of extension

In this case, the three global optima are obtained as [0/0/0/30/0/0/0/)30]s, [0/0/0/30/0/0/)30/0]s and [0/0/
30/0/0/0/)30/0]s, regardless of whether the uncertainty in material properties is considered. The optimal

fitness is 1.383 · 106 for nominal properties. When the uncertainties of material properties are considered,

the fitness is 1.375 · 106, which is 0.58% smaller than the optimal fitness for nominal material values. The

deviation of all the material properties is set to 5% from nominal values. The failure mode of the optimal is

the tensile axial direction (fiber breakage) for both cases.

The results of parametric evaluation in the application of GA are shown in Fig. 7, the plot only for

nominal material properties. For a population size greater than 15, as the population size increases, GA

requires more cost but finds more optima. By the implementation of multiple elitism, the average number of
optima found converges to the maximum value 3.

The sensitivities for optimal laminates are given in Table 2. The strength sensitivity for each material

property is given in the descending order. Modulus EL has the largest sensitivity, and ET is the second, and

this result depends on the loading condition. In the extension problem, changes of mLT and GLT do not affect

the strength of laminated composites significantly.
1

eters used in the application of GA

meters Values

omosome length 8

er limit of generation 100

ber of runs (Nr) 30

ulation size 7–50

ability of mutation 0.1

ability of crossover 1.0



Fig. 7. Parametric study for population size (at the nominal values of material properties, for the case of extension).

Table 2

Sensitivities with respect to the material properties (for the case of extension)

Material properties Normalized sensitivities

EL )5.886· 104
ET +3.965· 104
mLT )0.915· 104
GLT +1.921· 104
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5.2. For the case of bending

In this case, the global optimized layup is obtained as [0/0/0/30/0/0/0/)30]s, and the second and third

optimum are [0/0/0/30/0/0/)30/0]s and [0/0/30/0/0/0/)30/90]s. The optimal fitness is 2.658 · 10�2, and the

second and third optimal fitness are 2.657 · 10�2 and 2.653 · 10�2, respectively. The discrepancies of

the second and third optimal fitness from the first one are 0.054% and 0.146%, respectively. Because the

discrepancies are very small, the second and third optima can also be counted as one of the multiple

pseudo-optima. The failure mode of all three optima is the axial direction compression. Considering the
uncertainties of the material properties, optimal fitness decreases 0.23% from optimal one at nominal

properties. The second and third layup are not changed.

The results of a parametric study for evaluating GA�s performance are shown in Fig. 8. The performance

for this case is similar to that of the case of extension except for the average number of optima found. In

bending, the pattern of the third optimum layup is different from that of the first two optima. Thus, GA has

some difficulty in finding all three optima in every run, even though the population size increases. But

considering the small number for the generation limit specified, GA in the present study shows excellent

performance.



Table 3

Sensitivities with respect to the material properties (for the case of bending)

Material properties Normalized sensitivities

EL )4.713· 10�4

ET +0.703· 10�4

mLT )0.470· 10�4

GLT +4.010· 10�4

Fig. 8. Parametric study for population size (at the nominal values of material properties, for the case of bending).
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The sensitivities for optimal laminates are given in Table 3. In this problem, deviations of EL and GLT

from the nominal values have significant effects on the strength of laminated composites.

5.3. For the case of twisting

At the nominal properties, the global optimized layup is obtained as [30/)30/45/0/60/90/)60/)45]s, the
second and third optimum are [90/60/)60/30/45/)30/0/)45]s and [0/60/)60/30/45/)30/90/)45]s, respectively.
The optimal fitness is 10.84 · 10�4 and the second and third optimal fitness are 7.645 · 10�4 and
6.688 · 10�4, respectively. For checking the efficiency of multiple elitism, the three optima are treated as the

multiple optima. The failure mode of all three optima is the interlaminar failure mode. Considering the

uncertainties of the material properties, the global optimum layup is changed. In detail, the layup [60/45/

)60/)45/90/90/90/0]s takes the first rank with its fitness value, 5.510 · 10�4. The failure mode is not changed.

The second and third layup are [60/45/)60/)45/90/90/45/)45]s and [60/45/)60/)45/90/90/0/90]s, respectively.
In Fig. 9, GA�s performance accounting for the uncertainties of material properties is shown. For this

case, the second optimum layup was difficult to find for the same reason as that for the case of bending. The

decreased fitness, the term in the root of Eq. (21), of the optimum at the nominal material properties is
much larger than that of the optimum with uncertainties. Thus the old optimum is replaced by the new
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Fig. 9. Parametric study for population size (with the uncertainty of material properties, for the case of twisting).

Table 4

Sensitivities with respect to the material properties (for the case of twisting)

Material properties Normalized sensitivities

Old optimum New optimum

EL +6.465· 10�4 +3.341· 10�4

ET )2.576· 10�4 )4.831· 10�4

mLT +0.077· 10�4 +0.185· 10�4

GLT )5.959· 10�4 )10.099· 10�4
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optimum. The perturbed amount is calculated by the sensitivities in Table 4. To promote readers� com-

prehension, the averaged interlaminar normal and shear stresses in the old optimum layup are plotted in
Figs. 10 and 11, while those in the new optimum layup are plotted in Figs. 12 and 13. The dash-dot lines

represent the interlaminar stresses when the most sensitive material property has a 5% deviation.
6. Conclusion

Extended Kantorovich method could provide efficient and accurate interlaminar stresses near the free

edges. With these stresses, the layup of composite laminates could be optimized for maximum strength,

considering the interlaminar strength. The layup optimization, which may not be treated by traditional

gradient-based optimization techniques, could be executed with the help of a genetic algorithm. It was

demonstrated that GA with repair strategy works well in handling constraints in the layup optimizations of

composite laminates. GA with multiple elitism was able to find more solutions near the global optimum.

This result is important because the designer can have more flexibility in selecting the layup of composite
laminates.
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Fig. 10. Averaged interlaminar normal stress in [30/)30/45/0/60/90/)60/)45]s layup under twisting load.
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Fig. 11. Averaged interlaminar shear stress in [30/)30/45/0/60/90/)60/)45]s layup under twisting load.
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The bounded uncertainty could be easily considered in the optimization procedure by imposing the
scattering bounds in the input process. In the present problem, the optimal layup configuration is not

changed in the cases of the extension and bending loads even though the uncertainties of material properties

are considered. However, it should be emphasized that in the case of twisting, the optimal layup was

changed when the uncertain material properties was considered. Thus, to obtain a reliable strength design,

it is recommended that the new optimal layup configuration considering uncertain material properties

replace the layup configuration for nominal material properties under twisting loads.
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Fig. 12. Averaged interlaminar normal stress in [60/45/)60/)45/90/90/90/0]s layup under twisting load.
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Fig. 13. Averaged interlaminar shear stress in [60/45/)60/)45/90/90/90/0]s layup under twisting load.
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The methodology proposed in the present study can be used as a powerful tool in the layup design of

composite laminates.
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