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Abstract

The layup of the maximum strength of laminated composites with free edges under extension, bending, and
twisting loads was optimized by genetic algorithm (GA). Interlaminar stresses, as well as in-plane stresses, were
considered in estimating the strength of laminates. To calculate the interlaminar stresses of composite laminates with
free edges, iterative stress-based method was applied. To consider the bounded uncertainty of material properties,
convex modeling was used. Because interlaminar strength can change rapidly with respect to the scattered deviation of
material properties values, a linear convex model is not suitable in considering bounded uncertainty. Thus, in the
present study, two-point exponential approximation was used to build a convex set. In the formulation of a GA, a
repair strategy was adopted to satisfy given constraints. In addition, a multiple elitism was implemented to efficiently
and reliably search the optimum and near optimal designs as many as possible. Because uncertainties are always
encountered in composite materials, they need to be taken into account in lightweight design of laminated composite
structures. The combination of genetic algorithms and convex modeling is practical in accounting for the uncertainties
and optimizing layup.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminates with free edges experience the failure initiations by the critical interlaminar stresses near the
free edges. Thus, if the presence of free edges cannot be avoided, layups should be arranged such that the
interlaminar stresses are suppressed near the free edges of laminates. The interlaminar free-edge strength
analysis plays a key role in solving the optimization problem of a layup design of laminates. Although the
current finite element method can predict the interlaminar stresses, it still requires much computation time
and quite often it cannot predict accurately the interlaminar stresses near the interface between layers. In
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addition, the repeated efforts to prepare different meshes for analyzing the behaviors for various layup
configurations make design optimization not only impossible but much harder. Thus, a simple and efficient
analytical method (Cho and Yoon, 1999; Cho and Kim, 2000) should be designed to analyze the interla-
minar stresses near the free edges. Kim et al. (2000) demonstrated the efficiency and reliability of the
method in predicting the free-edge interlaminar stresses and strength under thermo-mechanical loadings.
The iterative extended Kantorovich method was used in the present study to analyze the strength of free
edges.

In laminated composite structures, the layups of laminates can be arranged to be lightweight and/or to
have high performance. In most structural designs using composite laminates, laminates are restricted to
some discrete sets of ply orientation angles such as 0°, £30°, +45°, +60° and 90°. This practical manu-
facturing point of view requires the discretized optimization methodology for the layup design problem.
Genetic algorithm (GA) or simulated annealing method is considered an appropriate method for discret-
ized optimization problems.

Genetic algorithm is a powerful methodology for problems with integer variables and problems in which
the gradient of the objective function is difficult to obtain (Goldberg, 1989). Recently, much research in
design optimization of composite structures employing a genetic algorithm has been reported. The appli-
cation of genetic algorithm for composite structures was initially reported by Hajela (1990). Le Riche and
Haftka (1993) proposed a genetic algorithm to optimize the stacking sequence of a composite laminate for
maximum buckling load. For the same problem, Liu et al. (2000) provided permutation genetic algorithms.
Le Riche and Haftka (1995) used a genetic algorithm for the minimum thickness design of composite
laminated plates. They proposed improved selection, mutation, and permutation operators to reduce the
average price of a genetic search. Nagendra et al. (1996) proposed an improved genetic algorithm to design
stiffened composite panels. A recessive-gene-like repair strategy was introduced by Todoroki and Haftka
(1998) to handle given constraints efficiently. Recently, Soremekun et al. (2001) applied the generalized
elitist selection (GES) to the problems with many global optima and to those with many designs that show
performance very close to optimal design.

In the present study, genetic algorithm with the repair strategy is adopted. The balanced symmetric
layup constraints and limitation of four contiguous layers are implemented by the repair strategy. To find
multiple global optima, we selected the first multiple elitist selection (ME1) among GES.

Due to the uncertainty of the manufacturing process on the laminated composites, the stiffnesses, angle
orientations and ply thicknesses of laminates are not determined uniformly. The scattering of these para-
meters depends on the quality of cured laminates. These uncertainties should be included in the design
process. However, the information on the overall probability density function for each of the parameters is
difficult to obtain. Thus, we postulate that the scattering bounds with respect to the nominal values of the
parameters such as material properties are known priori. Then, by constructing a convex set from the
scattering bounds and sensitivities of the functional, a modified functional with the effect of uncertainties
can be obtained (Ben-Haim and Elishakoff, 1990; Elishakoff and Colombi, 1993; Elishakoff et al., 1994;
Kim and Sin, 2000).

A linear convex modeling should not be applied to estimate the interlaminar free-edge strength, which
changes rapidly with respect to the deviation in the material property values. Thus, in the present study,
convex modeling for interlaminar strength under bending and twisting is constructed by using information
from the interlaminar failure surface which is approximated by two-point exponential approximation
(TPEA) (Fadel et al., 1990). Previously, the optimization considering uncertainties of material properties
under extension was presented by Cho and Rhee (in press). In the present study, extension, bending, and
twisting loads are considered to handle various loading conditions.

The present study consists of the following: First, the extended Kantorovich method for free-edge stress/
strength analysis is outlined for stretching, bending, and twisting. Second, the formulation of a modified
optimized functional subject to a convex set of constraints is derived with TPEA. Third, genetic algorithm
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with a repair strategy and a multiple elitism is outlined. Finally, numerical examples and discussions are
provided.

2. Strength analysis considering free-edge strength

2.1. Extended Kantorovich method

The geometry of composite laminates with free edges under extension, bending, and twisting is given in
Fig. 1. The laminate consists of orthotropic materials. The thickness of each ply is all the same, and
symmetric layups are considered. The linear elastic constitutive equations are assumed in each ply, and they
are expressed in the following form,
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For the given geometric configuration of laminates, the boundary conditions at the free edge and at the
surfaces of top and bottom faces are given in Eq. (2).

g,=04=0¢=0 aty=20,b,

2
03:04265:0 atz:ih/Z ()

Generalized plane strain states are assumed and the stress fields are independent of x-axis. The coor-
dinates are nondimensionalized as follows,

n=z/h, &=y/h.

Lekhnitskii stress functions are employed to satisfy pointwise equilibrium equations automatically.
These stress functions can be divided into the in-plane and out-of-plane functions. The functions f;(¢) and

Layer No.=1

Free Edge(y =0) /

Fig. 1. Geometry of composite laminates with free edges.



230 M. Cho, S.Y. Rhee | International Journal of Solids and Structures 41 (2004) 227-245

pi(&) are in-plane functions, and g;(1) and %;(y) are out-of-plane functions. The individual stress compo-
nents are obtained from Lekhnitskii stress functions and the relationships are given as,

0*F _ 82F_ 0*F _
6—112_627 6—62—03, W——%’ (3)
w_ o w_
aé - 5 67] — U6,
where,
F=3"/@am), v=>ngmn )
i=1 i=1

for extension and bending loads. The superscript I in Eq. (4) denotes differentiation with respect to 5. Or,

F=> 00800, b= nEh) ©

for twisting load. Since assumed stress functions g!(n7) in Eq. (4) cannot provide nontrivial interlaminar
stresses in the twisting load case, the assumed base functions g;(7) and 4;(y) are chosen independently.
The in-plane stress functions are determined from the initially assumed basis set of out-of-plane func-
tions which must satisfy traction-free conditions at the top and bottom surfaces. The initial out-of-plane
functions g;(n) are assumed to be the eigenmodes of a clamped-clamped beam vibration.
The governing equations are obtained from the principle of complementary virtual work.

0://\/M166,]dedydz

:///{(u,»BG,Z,-)’j—u,-J»SJ,-j}dxdydz (6)

:// u,So,-jnjdA—///%(u,-,j+uj7i)50ijdxdydz.

By using traction-free boundary conditions and neglecting rigid body motions, one obtains
// (Audo,, + Avdo, + Awdo,,)dydz
= // &;00;dydz  (Au=C — Bz, Av=—0z, Aw=B/2+ Oy), (7)

where B characterizes the bending of the body in the z—x plane and C characterizes the extension of the body
along the x-axis. @ is the relative angle of rotation about the x-axis.

From the initially assumed out-of-plane basis function set, one can get the in-plane stress functions. The
first process is given as follows. Substituting Eq. (3) into Eq. (7), the stresses are expressed in terms of f; and
pi- The Euler differential equations for f; and p; can be obtained from Eq. (7). Thus in-plane stress functions
are determined from the initially assumed out-of-plane stress functions g;(n).

In the second process, Kantorovich method is reapplied to the original complementary virtual work
principle given in Eq. (7). Substituting the in-plane stress functions f; and p;, which were obtained in the first
process, into Eq. (7), the enhanced out-of-plane stress functions g;() are obtained by solving Euler
equations derived from Eq. (7).
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The third iteration process is similar to the first one and the fourth process is similar to the second
process. In the computer program, n-time iterations can be easily performed since the stress function
patterns do not change after the second process. The detailed analysis process can be found in the papers
provided by Cho and Yoon (1999) and Cho and Kim (2000).

2.2. Evaluation of the interlaminar strength by the averaged stresses

Most interlaminar stresses show singularity or concentration near the free edges as shown in Fig. 2.
Thus, the pointwise stresses at the free edges are not meaningful in the strength analysis because this region
is not homogeneous in the micro-length scale. Therefore, the average stress criterion (Whitney and Nuis-
mer, 1974) is employed to evaluate the interlaminar strength of the composite laminates. For example, the
average value of interlaminar normal stress (o..) can be calculated by the following equation,

1 ho
oo / 0 (&) dE. (8)
0

0

In Eq. (8), A is taken as one ply thickness for all the cases. The concept of the average stress a.. is shown in
Fig. 2.

2.3. Maximum stress criterion and quadratic delamination criterion
In the present layup optimization problem for maximal strength, the maximum stress criterion was

adopted for the in-plane strength criterion, and a quadratic delamination criterion (Brewer and Lagace,
1988) was used for the interlaminar strength criterion. They are given as,

X <on <X, -Ye<o0,<Y, l|oyl<S, )

(10)
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Fig. 2. The concept of averaging stress over the distance (/) from free edge.
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where, X and Y represent the failure strength along and transverse to the fiber direction, respectively. S
denotes the shear strength. Tension and compression are represented by subscripts t and ¢, respectively. The
quantities &, and 4., denote the averaged interlaminar stresses near the free edge of the laminates as given
in Section 2.2. The quadratic delamination criterion is employed because it is more reliable and compact to
apply than the independent maximum average stress criterion. Using the above criteria, we consider the six
failure modes: tensile axial, compressive axial, tensile transverse, compressive transverse and interlaminar
failure modes.

3. Convex modeling

To consider the uncertainty of the design parameters, the function of the probability distributions should
be known. However, the probability function of the scattered distribution requires sufficient data mea-
surements. In the industry, these uncertainty distribution functions may not be available. If the uncer-
tainties under consideration are bounded with respect to the nominal reference values, a convex set from
scattering bound of design parameters can be easily constructed. The convex set can be used in the con-
straint equations of the optimization problem to consider the uncertainties of material data. The procedure
for the convex modeling is outlined here to apply to our problems.

Convex modeling needs to be modified to consider properly uncertainty of material properties in
evaluating the inerlaminar strength. Thus, the failure surface for interlaminar strength should be ap-
proximated more closely to the exact one. Thus in the present study, TPEA is used to build a convex set for
the interlaminar strength. TPEA is a methodology for approximating the actual function by using function
values and derivatives at the two design points. The sensitivities inserted in the convex modeling are cal-
culated from information from the approximated failure surface.

3.1. Formulation of convex modeling

In this section, formulation of convex modeling is briefly outlined. The detailed explanation can be
found in the reference (Kim and Sin, 2000).

Let us assume that G(D;) is a failure index for optimization. D; are the uncertain parameters considered
in the problem. We consider the uncertainty of material properties in the present study. Then D;, D,, Ds
and D, are set equal to Ey, Et, vpr and Gyr, respectively. The failure index G(D;) can be expanded up to
linear terms by considering small parameter changes as follows,

G(D;) = G(D} + ;) = G(D}) + 24: %5?)

i=1

0, (11)

where DY are the nominal values of the uncertain parameters and |d;| < 4;.
The perturbed failure index can be symbolically given as,

G(D) + ;) = G(DY) + {/}"{6}, (12)
where,

()T = [20(DY) 2G(D)) BG(DY) BG(DY)
| oD, ' oD, ' dD; ' oDy |’

{0} = [01,02, 83, 84]. (14)
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Fig. 3. Schematic of convex set in 3-D configurational space.

If it is assumed that o; construct a convex set, then from the linearity of Eq. (12), maximum values are on
the boundary of the convex set. The constructed convex set of ellipsoid shape is derived as follows,

Z(d):{ézij—§<l}. (15)

In Fig. 3, the schematic of the convex set in 3-D configurational space with three uncertain parameters D,
D, and D; is displayed.

To increase the accuracy of analysis, the volume of ellipsoid Cd|d>dsd, should be minimized. Moreover,
the corners of the box (§; = +4;) have to be on the surface of the ellipsoid. Thus, to obtain d;, the following
Lagrangian should be minimized with respect to d¢; and 7,

A2 2 2 P
L:Cdld2d3d4+i(d—l§+d—2§+d—§+d—§—1). (16)
Through the minimization process, d; can be obtained as,

di =24, (17)

The problem of maximizing the failure index with material data scattering J; can be constructed in the
following form,

Ginax = Maxysyez) [G(DY) + {r1{s}]. (18)
The problem can be expressed by the following modified Lagrangian,
L(3) = {} {3} + A({3} {e}{o} - 1), (19)

where {¢} is a diagonal matrix whose diagonal elements are ¢; = 1/d>.
After obtaining the Lagrange multiplier, {6} for the maximum failure index is obtained as,

1

(O =t—e—e—
Vi e sy

{e} s} (20)
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The maximum failure index considering bounded scattered data can be finally obtained as,

G = G(0D) £ 1Y 1y = 600 | S [ 500 21

i=1

To construct a convex set for considering the bounded uncertainty of scattered parameters, the sensi-
tivities are computed with a finite difference scheme. That is,

G _G-G [g : small number (0.0001) } (22)

oD, D, D; : nominal values of properties

where, G° and G* are the objective functions at the nominal values of material properties and at the
scattered values, respectively.

When the convex model is applied even for the same layup, the failure mode may be altered as the
amount of deviations of material properties is changed. Thus, six independent convex sets for one layup are
constructed to consider six independent failure modes. The minimum among the failure indices calculated
from the six convex sets is assigned as the fitness of the layup.

3.2. Modification of convex modeling for interlaminar strength: TPEA

A TPEA (Fadel et al., 1990) was developed originally for reducing computational cost. Here, it is
employed to estimate derivatives in the convex model more accurately. This approximation is a linear
approximation with the exponent transform through intermediate variables. The physical variables are
transformed to the intervening variables using the relation,

,=D" (i=1,2,...,n), (23)

where 7 is the number of design variables and the exponents p; are determined by matching derivatives of
function at the nominal values of material properties.

_ <D> G
o \Df oD;

where f)? is the point which consists of nominal values and 5;’ is the perturbed point which is at a certain
distance from the nominal point.
Finally, the approximated function is obtained by expanding the function at the deviated point as,

N oG
oD,

oG
oY;

oG
-5

(24)

)
70 7o b

G(D) = (D) + 3 {7(’3;3[ . Sg

(D) = (D?)”"]}- (25)

D

Sensitivities required to construct convex model are calculated from the exact function value at the
nominal point and approximated function value at the deviated point.

Subst

G GD") — GD,DY,....D° — A;,....D°
— ( ) ( 1 27A ) i ) ) n)’ (26)

oD;

where the superscript ‘Subst’ indicates the substituted sensitivity. For 1-D example, the substituted sensi-
tivity corresponds to the slope shown in Fig. 4. The sensitivity value in the modified convex model is now
changed by using TPEA given in Egs. (25) and (26).
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Modified Convex Model
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Fig. 4. Sensitivity obtained by using TPEA in 1-D.

4. Genetic algorithm

The design objective of the present study is to obtain layup configurations of symmetric laminates that
sustain the maximum applied load under the above-mentioned independent maximum stress criterion. The
16-ply symmetric layup configurations are considered in the present study. Each ply thickness is fixed, and
ply orientation angles are limited to 0°, +£30°, £45°, £60° and 90°. This limitation makes the layup design a
combinatorial optimization problem. Genetic algorithms have been used extensively to solve this type of
combinatorial problems. Genetic algorithms are well suited for the problem of layup optimization, and
because of the random nature of GA, they easily produce alternative optima in repeated runs. This property
is particularly important in layup optimization because widely different layups can have very similar per-
formance (Shin et al., 1989).

Three constraints are applied to the present optimization problem. The first one is the symmetric layup
constraint, but this is satisfied automatically by the coding rule in which only half of the laminates are
represented in a chromosome. The second constraint is a requirement of the balanced laminate construc-
tion, which is intended to reduce or eliminate undesirable extensional-shear coupling and bending—twisting
coupling. The third constraint is a limit of four contiguous plies with the same fiber orientation, which
reduces the problem of matrix cracking. These constraints are referred to as ‘balance constraint’ and ‘four-
contiguity constraint’ respectively in the following descriptions. It is not easy to enforce these two con-
straints in genetic optimization. Penalty function may be used to handle these constraints. But in the
present study, a recessive-gene-like repair strategy (Todoroki and Haftka, 1998) is applied with modifi-
cations. The key concept of the strategy is to repair the laminate without changing the chromosome.

For the problem with multiple global optima, the optimization process that finds as many optima as
possible is required. To find these optima, the multiple elitism strategy (Soremekun et al., 2001), which
copies the best designs in current generation into the next generation, is adopted.

4.1. Outline of GA scheme

The flowchart of GA is illustrated in Fig. 5. To represent the ply angles in a layup as genes (in a
chromosome), five numbers are introduced with each gene having one of the values of 0, 1, 2, 3 or 4. The
gene-0 and gene-4 correspond to 0° and 90° plies, respectively. The occurrences of the first (outermost),
third, fifth, and so on of gene-1 correspond to +30° while even-number occurrences correspond to —30°. In a
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Fig. 5. Flowchart of GA.

similar way, gene-2 and gene-3 represent +45° and +60°, respectively. Herein, only half of the plies is
represented by the chromosome due to the symmetry constraint of laminates.

The initial population of chromosomes is generated at random. Each chromosome (laminate) is repaired
by the following repair strategies and evaluated by the maximum applied load, calculated by using the
strength analysis described in the previous section.

The N, best chromosomes of each generation are always copied into the next generation by multiple
elitism. Selection is executed by a linear search through a roulette wheel with slots weighted in proportion
to string fitness values.

After selection, a two-point crossover, which is different from a simple crossover, is conducted with a
probability value of P,. Two random cut-points are chosen first, and the offsprings are generated by
combining the middle segment of one parent with the outer segment of the other parent. When crossover is
not conducted, the selected two parents are copied into the next generation.

Mutation is applied to the chromosomes, except for the elites of the previous generation. The probability
of mutation, Py, is defined as the percentage of the total number of genes in the population. This operator
prevents premature loss of important genetic information by randomly altering a chromosome.

4.2. Repair strategy for balance constraint

When the number of gene-1 is odd, the decoded laminate will be unbalanced, or only one unbalanced
+30° ply will be in excess in the laminate. The situations will be same for gene-2 and gene-3. In the present
study, the strategy for balance constraint is classified into three cases. The repairing procedures are adopted
such that they make the least changes in the mechanical behavior of the repaired layup compared to that of
the unrepaired layup.

When only one kind of gene among three genes (gene-1, gene-2 and gene-3) violates balance constraint,
the innermost gene-1 is changed into gene-0, and the gene-2 is changed into gene-0 or gene-4 with the same
probability, and the gene-3 into gene-4, respectively. If there is only one violating gene, the innermost gene-
0 or gene-4 is altered to balance the violating gene. When two kinds of genes violate this constraint, the
innermost gene among the violating genes is converted into the other kind of gene.

Let us consider a case in which there are three gene species that violate the balance constraint. If the
innermost gene among the group of gene-1’s and gene-3’s is gene-1, the innermost violating gene-1 should
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be changed to gene-0. Next, the remaining violating genes are gene-2 and gene-3. The next repairing process
is to convert the innermost violating gene (among the group of gene-2’s and gene-3’s) into the remaining
angle-ply gene (gene-2 < gene-3). In the other case in which gene-3 is the innermost instead of gene-1, the
innermost gene-3 is converted into gene-4. Consecutively, the innermost violating gene (among the group of
gene-1’s and gene’2) is switched into the remaining angle-ply gene (gene-1 < gene-2).

This strategy is similar to that of Todoroki’s version but not the same. For example, in the present
repairing strategy, the repairing process for balance constraint precedes the four-contiguity constraint re-
pairing process. Thus, extra effort is not required to reconsider the four-contiguity constraint in checking
the balance constraint. In addition, three kinds of angle-ply genes are considered in the present study (+30°,
+45°, £60°), whereas only one kind of angle-ply genes is considered in Todoroki’s study (£45°). Thus, the
consideration of balance constraint is more complicated in the present strategy than in Todoroki’s.

If the repair procedure does not change the laminate but changes the genes only, it can prevent beneficial
changes which occur as a result of two or more consecutive mutations. For example, consider a case when it
is beneficial to transform the chromosome [13130202] corresponding to the [30/60/—30/—60/0/45/0/-45];
laminate into [13130404] corresponding to the [30/60/—30/—60/0/90/0/90]; laminate. When the chromosome
[13130202] mutates into the chromosome [13130204], the repair system reverses the change, and the
chromosome still corresponds to the [30/60/—30/—-60/0/45/0/—45]; laminate. In this case, the repair proce-
dure does not change the chromosome. One additional mutation in a future generation can transform the
gene to [13130404], and the innermost gene-4 will now be developed into the 90° ply. The innermost gene-4
acts like a recessive gene.

4.3. Repair strategy for four-contiguity constraint

This constraint is concerned with only gene-0 and gene-4. When there are more than four contiguous
genes, the innermost one of the contiguous genes is converted into other suite of gene. For example,
[02444420] is repaired into [2444020].

For the innermost genes, this repair procedure should be modified. When the two innermost genes are of
the same kind, there are already four contiguous plies with the same orientation in the middle of the
laminate due to the layup symmetry. Therefore, the repair process is not allowed to stack more than two
genes in the innermost position within a laminate. When the innermost genes violate this rule, the gene
value of the innermost ply is converted into another kind of gene. For example, [04104100] is converted into
[04104104].

4.4. Multiple elitism

The schematic of multiple elitism is shown in Fig. 6. The top designs (elites) from the parent population
are selected and placed into the new population. The child designs required to fill the remainder of the new
population are created from the remaining parents that have not been selected as multiple elites, and then
placed into the new population. This selection scheme is computationally less intensive because fewer child
designs require fitness computation. The number of elites to be copied into the next generation (N,) is
determined by the following equation, in which the more elites are selected as the population size increases,

oo P3| g

where, PopSize is the population size and the symbol ““| |” (floor) indicates the largest integer smaller than
or same as the number in the symbol. For example, when population size is 25, seven elites are selected and
copied into the next generation.
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Fig. 6. Schematic of multiple elitism.
4.5. Criteria for evaluating the performance of GA

If the optimized results have been obtained, the performance of GA can be estimated for various pa-
rameters. In the following study, four different criteria, which was previously proposed by Soremekun et al.,
are applied to assess the performance of the present GA in the layup optimization problem. The first
criterion is the normalized cost per genetic search, C,, determined by

NN, Nop
Ch = S (R =N >, (28)

where N, is the number of generations per run, N, is the number of child designs created in each generation,

and R is reliability. If GA is run N, times and succeeds in finding at least one of the several global optima

N,p times of these runs, then the reliability R is calculated as the equation in the parenthesis of Eq. (28).
The second criterion is the average number of optima found per genetic search:

ZNr Nl
Any = N, (29)

where N/ is the number of optima found in the ith optimization run. In the present study, there are three
global optima for the case of extension and there are three pseudo-optima for the cases of bending. Thus,
we choose three as the maximum number of this criterion for all cases.
The third criterion is defined as the cost per optimum found:
NN,

0

The final criterion is the final population richness, which helps to monitor how the GA exploits global
optimum regions of the design space. Final population richness P, is defined as,

Ny
Lo 31

PopSize - N; (31)
where Ny, is the number of members in the final population of each run with fitness values within a certain
small amount (Af) of the optimum.

P =
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5. Results

In the present study, graphite-epoxy composite laminates under extension, bending, and twisting are
considered. We consider symmetric 16-ply layup configurations. The material properties and strength data
are as follows,

E, =207 GPa, E, =FE;=5GPa, G;=G;3=2.6GPa,
G»; = 1.8 GPa, v, =vi3=0.25, vy;3 =045,

X, = 1035 MPa, X, = 689 MPa,

Y, =41 MPa, Y =117 MPa, S =69 MPa,

where subscripts 1, 2, and 3 indicate the x-, y- and z-direction in the space, respectively.

In the calculation of the interlaminar stresses, two term expansion (n = 2) in Egs. (4) and (5), is used and
three iterations are performed in the extended Kantorovich method. These selections are sufficient to
calculate stresses reliably.

Various parameters—population size, probability of mutation, and probability of crossover, and so
on—are given in Table 1. As previously stated, four criteria in Section 4.5 are adopted to evaluate the
numerical performance of GA. In the evaluation of Na, in Eq. (31), we consider the designs whose fitnesses
are within the deviation of 9.2% from the optimal one for extension and 6.4% for bending and 12.4% for
twisting.

5.1. For the case of extension

In this case, the three global optima are obtained as [0/0/0/30/0/0/0/—30],, [0/0/0/30/0/0/—30/0], and [0/0/
30/0/0/0/-30/0];, regardless of whether the uncertainty in material properties is considered. The optimal
fitness is 1.383 x 10° for nominal properties. When the uncertainties of material properties are considered,
the fitness is 1.375x 10°, which is 0.58% smaller than the optimal fitness for nominal material values. The
deviation of all the material properties is set to 5% from nominal values. The failure mode of the optimal is
the tensile axial direction (fiber breakage) for both cases.

The results of parametric evaluation in the application of GA are shown in Fig. 7, the plot only for
nominal material properties. For a population size greater than 15, as the population size increases, GA
requires more cost but finds more optima. By the implementation of multiple elitism, the average number of
optima found converges to the maximum value 3.

The sensitivities for optimal laminates are given in Table 2. The strength sensitivity for each material
property is given in the descending order. Modulus E has the largest sensitivity, and Er is the second, and
this result depends on the loading condition. In the extension problem, changes of vit and Gt do not affect
the strength of laminated composites significantly.

Table 1

Parameters used in the application of GA
Parameters Values
Chromosome length 8
Upper limit of generation 100
Number of runs (V;) 30
Population size 7-50
Probability of mutation 0.1

Probability of crossover 1.0
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Fig. 7. Parametric study for population size (at the nominal values of material properties, for the case of extension).

Table 2
Sensitivities with respect to the material properties (for the case of extension)
Material properties Normalized sensitivities
Eyp -5.886% 10*
Er +3.965x 10*
VLT -0.915x 10*
Gir +1.921x 10*

5.2. For the case of bending

In this case, the global optimized layup is obtained as [0/0/0/30/0/0/0/—30];, and the second and third
optimum are [0/0/0/30/0/0/-30/0]; and [0/0/30/0/0/0/—30/90];. The optimal fitness is 2.658 x 1072, and the
second and third optimal fitness are 2.657x 1072 and 2.653x 1072, respectively. The discrepancies of
the second and third optimal fitness from the first one are 0.054% and 0.146%, respectively. Because the
discrepancies are very small, the second and third optima can also be counted as one of the multiple
pseudo-optima. The failure mode of all three optima is the axial direction compression. Considering the
uncertainties of the material properties, optimal fitness decreases 0.23% from optimal one at nominal
properties. The second and third layup are not changed.

The results of a parametric study for evaluating GA’s performance are shown in Fig. 8. The performance
for this case is similar to that of the case of extension except for the average number of optima found. In
bending, the pattern of the third optimum layup is different from that of the first two optima. Thus, GA has
some difficulty in finding all three optima in every run, even though the population size increases. But
considering the small number for the generation limit specified, GA in the present study shows excellent
performance.
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Fig. 8. Parametric study for population size (at the nominal values of material properties, for the case of bending).

Table 3
Sensitivities with respect to the material properties (for the case of bending)
Material properties Normalized sensitivities
EL -4.713x10~*
Er +0.703x 104
VLT —-0.470 x 1074
Gt +4.010x 107*

The sensitivities for optimal laminates are given in Table 3. In this problem, deviations of £ and Gyt
from the nominal values have significant effects on the strength of laminated composites.

5.3. For the case of twisting

At the nominal properties, the global optimized layup is obtained as [30/—30/45/0/60/90/—60/—45];, the
second and third optimum are [90/60/—60/30/45/—-30/0/—45]; and [0/60/—60/30/45/-30/90/—-45],, respectively.
The optimal fitness is 10.84x10™* and the second and third optimal fitness are 7.645x10~* and
6.688 x 107*, respectively. For checking the efficiency of multiple elitism, the three optima are treated as the
multiple optima. The failure mode of all three optima is the interlaminar failure mode. Considering the
uncertainties of the material properties, the global optimum layup is changed. In detail, the layup [60/45/
—60/-45/90/90/90/0], takes the first rank with its fitness value, 5.510x 10~*. The failure mode is not changed.
The second and third layup are [60/45/—60/—45/90/90/45/—-45]; and [60/45/—60/—45/90/90/0/90];, respectively.

In Fig. 9, GA’s performance accounting for the uncertainties of material properties is shown. For this
case, the second optimum layup was difficult to find for the same reason as that for the case of bending. The
decreased fitness, the term in the root of Eq. (21), of the optimum at the nominal material properties is
much larger than that of the optimum with uncertainties. Thus the old optimum is replaced by the new
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Fig. 9. Parametric study for population size (with the uncertainty of material properties, for the case of twisting).

Table 4

Sensitivities with respect to the material properties (for the case of twisting)
Material properties Normalized sensitivities

Old optimum New optimum

Ep +6.465x 10~ +3.341x 1074
Er -2.576x 10~ -4.831x 10~
VLT +0.077x 10 +0.185x 10~*
Gir -5.959x 10~ -10.099x 10~*

optimum. The perturbed amount is calculated by the sensitivities in Table 4. To promote readers’ com-
prehension, the averaged interlaminar normal and shear stresses in the old optimum layup are plotted in
Figs. 10 and 11, while those in the new optimum layup are plotted in Figs. 12 and 13. The dash-dot lines
represent the interlaminar stresses when the most sensitive material property has a 5% deviation.

6. Conclusion

Extended Kantorovich method could provide efficient and accurate interlaminar stresses near the free
edges. With these stresses, the layup of composite laminates could be optimized for maximum strength,
considering the interlaminar strength. The layup optimization, which may not be treated by traditional
gradient-based optimization techniques, could be executed with the help of a genetic algorithm. It was
demonstrated that GA with repair strategy works well in handling constraints in the layup optimizations of
composite laminates. GA with multiple elitism was able to find more solutions near the global optimum.
This result is important because the designer can have more flexibility in selecting the layup of composite
laminates.
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Fig. 11. Averaged interlaminar shear stress in [30/—30/45/0/60/90/—60/—45]; layup under twisting load.

The bounded uncertainty could be easily considered in the optimization procedure by imposing the
scattering bounds in the input process. In the present problem, the optimal layup configuration is not
changed in the cases of the extension and bending loads even though the uncertainties of material properties
are considered. However, it should be emphasized that in the case of twisting, the optimal layup was
changed when the uncertain material properties was considered. Thus, to obtain a reliable strength design,
it is recommended that the new optimal layup configuration considering uncertain material properties
replace the layup configuration for nominal material properties under twisting loads.
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Fig. 12. Averaged interlaminar normal stress in [60/45/—60/—-45/90/90/90/0]; layup under twisting load.
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Fig. 13. Averaged interlaminar shear stress in [60/45/—60/—45/90/90/90/0]; layup under twisting load.

The methodology proposed in the present study can be used as a powerful tool in the layup design of
composite laminates.
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